Hello!!

For quiz review: jump to slide 21

- In your notes, find the knowns for the following problem: Draw a picture too.
 - A ball is kicked at an angle of 40° at a velocity of 12m/s from a 7m high shed. How far from the base of the shed does it land?

Today

- 2-D kinematics with a change in the y direction.
- Break these problems into 2 parts.
- I) Launch to maximum height.
- 2) Maximum height to the "landing" height.

Quiz Friday

- 6 total questions.
 - 2 horizontal projectiles.
 - 2 projectiles with no change in y.
 - 2 projectiles with a change in y.

Key Concepts

- Break the problems into two pieces.
- A to B: from launch to the maximum height.
- B to C: from maximum height to the end of the motion.
 - This may not be the landing.

Concepts Continued

- Determine the initial conditions.
- Use this information to solve for all information that allows you to set up the problem from B to C.
- You may/will need to combine totals (generally time) to solve for the entire problem.

- A ball is kicked at an angle of 40° at a velocity of 12m/s from a 7m high shed. How far from the base of the shed does it land? A to B.
 - x direction
 - Δx
 - Vi,x = 9, 19 %/c
 - Vf,x = $\bigvee_{i \times i}$
 - ax = 0 7/5
 - t (x and y) 0.79 8

- Vi and $\theta = 40^{\circ}$ (neither x nor **y** 7 / 2 // c
- y direction:
- $\bullet \Delta y = 3.03 \,\mathrm{M}$
- Vi,y = 7. 7/ m/s
 Vf,y=0^M/s

- A ball is kicked at an angle of 40° at a velocity of 12m/s from a 7m high shed. How far from the base of the shed does it land? B to C
 - x direction
 - ∆x
 - Vi,x = 9 . 1 9 m/s
 - Vf,x ⊇ \(\); \(\)

 - ax = 0% t(x and y) = 1.43• Vi,y = 0% Vf,y
- Vi and θ (neither x nor
- y direction:
- Δy=-10.03m

- A ball is kicked at an angle of 40° at a velocity of 12m/s from a 7m high shed. How far from the base of the shed does it land? (A) to (C)
 - x direction
 - · Ax 20,4/m
 - Vi,x=9.19 %
 - Vf,x = 9.19 mg
 - ax = 1/5 ~
 - t (x and y) = 2 2 2
 Vf,y

- Vi and θ (neither x nor
- y direction:
- Δy = -+ M
- Vi,y=77 (M/s

$$\frac{-b + \sqrt{b^2 - 4ac}}{2a} = t$$

$$\frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

$$t = 2.22s$$
or
$$t = -2.64s$$

Chain Drop Experiment

Predict

- A trebuchet launches a stone at a velocity of m/s at an angle of 32° from 6m off the 40 ground at a | | m high wall that is 82m away. What is the clearance of the stone over the top edge of the wall? A to B.
 - x direction

 - ax =

 Vi,y = 21.2 $\frac{1}{5}$ t (x and y) = $\frac{21.2}{5}$ $\frac{1}{5}$ $\frac{1}{5}$
 - Vi and θ 32 • $\Delta x = 73.3m$ (neither x nor y) $_{40}$ • V_{1} , x = 33.29 • y direction:
 • V_{1} , $x = \sqrt{1}$ • $\Delta y = 22.9m$

- A trebuchet launches a stone at a velocity of 1) 2625 m/s at an angle of 32° from 6m off the ground at a 25m high wall that is 82m away. What is the fearance of the stone over the top edge of the wall? B to C. 10.6 m
 - x direction
 - ∆x =8.7

 - Vf,x > √i y
 - ax

- Vi and θ (neither x nor
- $\bullet \Delta y = -0.3$
- Vi,y _ ^M/
- ay

• A trebuchet launches a stone at a velocity of m/s at an angle of 32° from 6m off the ground at a m high wall that is 82m away. What is the clearance of the stone over the top edge of the wall? A to C.

- x direction
- ∆x
- Vi,x
- Vf,x
- ax
- t (x and y)

- Vi and θ
 (neither x nor
 y)
- y direction:
- ∆y
- Vi,y
- Vf,y
- ay

0

Chain Drop Answer 2

Chain Drop Explained

Hello.

We will be putting the quiz off until Tuesday.

Today: Finish 2-D & work on quest.

Tomorrow: Marble Launcher Lab

Monday: Review for quiz.

Tuesday: 2-D kinematics quiz.

X-Dir $\Delta x = 1.25m$ t=0.69s $\Delta Y-Dir$ $\Delta x = 1.25m$ t=0.69s $\Delta Y = 2.37m$ $\Delta X = 1.81m$ ΔX

X-Dir $\Delta x = 0.79m$ t = 0.44s $\Delta y = 0.93m$ Vix = 1.81% Vfy = 1.81% $Q_1 = 0.81\%$ $Q_2 = -9.8\%$

A to C

Time permitting (before noon) get laptops and look over the quest.

Ask questions about problems that you would like to know more about.

Work in groups to solve problems.

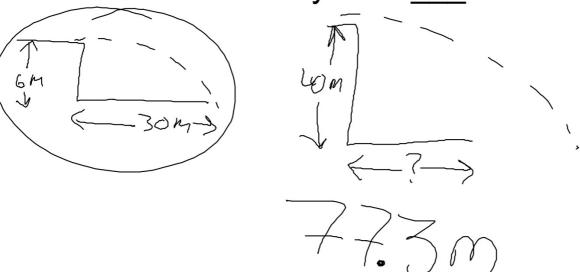
Good Morning!

Please grab a whiteboard if you would like one.

Grab a formula sheet from the front desk.

Calculator in degrees.

There are three basic types of problems:


- -Horizontal Projectiles
- -Projectiles with no change in Y
- -Projectiles with a change in Y.

A by is thrown from a 50 m building with a horizontal velocity of 20 m/s. How far from the base of the building does it land?

14= Vint+ 2003

14= Vint+ 2003

A rochs has a horizontal displacement of m when launced from a 6 m ladder. What is it's horizontal displacement when launched horizontally from 40 m?

throws a <u>Manh</u> to <u>Moah</u> with a velocity of 15% at an angle of 35%. How Far away is <u>Manh</u> if they catch it at the same height that it was thrown.

21.60

A \bigcirc is lauched from a \bigcirc m building with a velocity of \bigcirc m/s at an angle of \bigcirc . How far from the base of the building does it land?

Trot=1.8st 3.93s=5.73s

Shoot the Monkey

Friday

Monkey Hunter

An arrow is fired at 40° at a velocity of 10m/s at the same time that a target is dropped. If the target is hit I second later: How far is it from the bow Δx ? How high was the target dropped from? Skip